The Emerging Roles of Gamma–Delta T Cells in Tissue Inflammation in Experimental Autoimmune Encephalomyelitis

نویسندگان

  • Sakshi Malik
  • Muzamil Yaqub Want
  • Amit Awasthi
چکیده

γδ (gamma-delta) T cells, a small population of unconventional T cells, have been found in central nervous system lesions of multiple sclerosis (MS) patients, but their function in disease activity is not clearly understood. Previous studies in experimental autoimmune encephalomyelitis (EAE) were inconsistent in identifying their specific roles in suppressing or promoting disease pathogenesis. Emerging advancements in the biology of γδ T cells especially in the context of their being the major initial producers of IL-17, suggested their crucial role in pathogenesis of EAE. In addition, γδ T cells express high levels of IL-23R and IL-1R, which further enhance their effector functions in the pathogenesis of EAE. Nonetheless, activated heterogeneous γδ T cells display functional dichotomy, which is crucial in determining the outcomes of tissue inflammation in EAE. In this review, we discussed recent advances in understanding the biology of γδ T cells in tissue inflammation as well as their roles in suppressing or promoting the development of EAE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 28: Bone Marrow-Derived Mesenchymal Stem Cells Reduces Neuroinflammation and Splenic Cytolytic CD8 + T Cells in Mice with Experimental Autoimmune Encephalomyelitis

Introduction: Multiple sclerosis (MS) has been recognized as a common neurodegenerative disease that occurs after an Auto reactive T cells against myelin antigens.  Demyelination and inflammation are the main features of this disease. The anti-inflammatory and neuroprotective roles of bone marrow-derived mesenchymal stem cells (BM-MSCs) have been considered as a suitable tre...

متن کامل

Immunomodulatory Effect of Mesenchymal Stem Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: A Review Study

Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system that may lead to disability of the patient. Current MS treatment regimens are still insufficient and research is conducted for developing more effective therapies capable of targeting neurodegeneration, inflammation, and demyelination. Recent results of experimental and clinical studies in ...

متن کامل

Peroxisome proliferator–activated receptor δ limits the expansion of pathogenic Th cells during central nervous system autoimmunity

Peroxisome proliferator-activated receptors (PPARs; PPAR-alpha, PPAR-delta, and PPAR-gamma) comprise a family of nuclear receptors that sense fatty acid levels and translate this information into altered gene transcription. Previously, it was reported that treatment of mice with a synthetic ligand activator of PPAR-delta, GW0742, ameliorates experimental autoimmune encephalomyelitis (EAE), indi...

متن کامل

JAGGED1 and delta1 differentially regulate the outcome of experimental autoimmune encephalomyelitis.

Notch signaling plays an important role during T cell development in the thymus and in T cell activation but the role of Notch in autoimmunity is not clear. We investigated the role of Jagged1 and Delta1 in experimental autoimmune encephalomyelitis. During experimental autoimmune encephalomyelitis, Delta1 expression is up-regulated on dendritic cells and B cells after priming while Jagged1 is u...

متن کامل

miR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway

Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in immunology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016